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Desynchronization of coupled electrochemical oscillators with pulse stimulations
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Various stimulation desynchronization techniques are explored in a laboratory experiment on electrochemi-
cal oscillators, a system that exhibits transient dynamics, heterogeneities, and inherent noise. Stimulation with
a short, single pulse applied at a vulnerable phase can effectively desynchronize a cluster. A double pulse
method, that can be applied at any phase, can be improved either by adding an extra weak pulse between the

original two pulses or by adding noise to the first pulse.
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Synchronization of sets of coupled oscillators occurs in a
variety of fields including physics [1], chemistry [2], biology
[3-5], neuroscience [6], and medicine [7]. Theories on the
synchronization of phase oscillator populations have been
developed [2,8,9] and experimentally demonstrated with a
population of electrochemical oscillators [10]. However, in
some cases synchronization is not desirable. For example, in
population biology the increase of migration rates may cause
global metapopulation extinction through synchronization
[11]. Mutual synchronization among pedestrians walking on
a bridge can cause dangerous swaying motion [12]. Patho-
logical synchronization of clusters of neurons are found to be
related to tremor activities [13—15].

Stimulation procedures [7], linear [16] (or nonlinear [17])
feedback algorithms, and decrease of interaction strengths
[2] are three ways to destroy unwanted synchronization.
Among these methods, the easiest to implement in experi-
mental settings is pulse stimulation. Theoretical studies on
desynchronization by pulse stimuli have been carried out us-
ing phase oscillator models. Depending on the phase, a pulse
may either advance or delay the oscillation. Hence, desyn-
chronization can be achieved with a single pulse stimulation
of the right intensity and duration by hitting the synchronized
system at a vulnerable phase in such a way that approxi-
mately half of the elements are delayed, whereas the ele-
ments in the other half are advanced [3,7]. Other desynchro-
nization stimulation techniques including double [18] and
bipolar double pulses [19] have also been explored with
phase models in an attempt to improve the desynchronization
effects.

However, experimental studies on desynchronization
stimulation techniques are lacking. In this work, we use a
synchronized population of electrochemical oscillators that
exhibit changes in amplitude, transient dynamics, heteroge-
neities, inherent noise, and drift as a testbed for various pulse
stimulation desynchronization techniques.

The system is an array of 64 nickel electrodes (1-mm
diam with 2-mm spacing, in 8 X 8 geometry) in sulfuric acid.
Current, proportional to the rate of reaction (nickel dissolu-

*Author to whom correspondence should be addressed; email ad-
dress: hudson@virginia.edu

1539-3755/2005/71(6)/065202(4)/$23.00

065202-1

PACS number(s): 05.45.Xt, 82.40.Np, 87.19.La

tion), is measured on each electrode at a constant applied
potential (1.09 V versus K,SO,/Hg,SO, reference elec-
trode) just above a Hopf bifurcation; the oscillations are
smooth with a mean frequency of 0.485 Hz and a standard
deviation of 7 mHz due to heterogeneities of the electrode
surface properties. A schematic of the experimental setup and
additional experimental details are given in Ref. [10]. Global
coupling is added with a series resistor to obtain a synchro-
nized base state of the oscillator population. The phase ¢;(t)
of each element is calculated with the Hilbert transform
[H(i(r)=(i))] of individual current time series [10,20]. An
order parameter, defined as the normalized length of the vec-
tor sum of the phase points [P(t)] in H[i(t)—(i)] versus
[i(£)—(i)] space, is used to characterize the extent of the syn-
chrony of the population,

(1) =2 Pi(1) / 2 [P)].
J J

This order parameter is similar [21] to the Kuramoto or-
der parameter [2] or the first mode of the generalized order
Z; [9], Z,. The higher modes of generalized order Z(k>1)
[7] or clustering algorithms [22] can be used to characterize
k cluster states. However, in the experiments on smooth elec-
trochemical oscillators, no clusters were found during the
desynchronization.

The magnitude of r= |Z , the order, has a maximum value
of 1 for full synchronization and O for complete desynchro-
nization (for a population of infinite size). r was adjusted
with coupling to be around 0.85-0.95 before the pulse stimu-
lation. The pulse is superimposed on the applied potential
and therefore globally affects all elements.

The effect of a single weak pulse administered at a stimu-
lation phase ¢g=0.35 (in fraction of the mean current cycle)
is shown in Fig. 1. The amplitude of the mean current [Fig.
1(a)] decreased shortly after the pulse while the individual
current reattained its original large amplitude oscillation after
two cycles. Simultaneously, the order decreased to a low
value [Fig. 1(b)]. Note that r reached the minimum value
after a few cycles following the pulse; this is quite different
from the effect of a single pulse on phase oscillator popula-
tions, where the maximum desynchronization effect is ob-
tained immediately after the pulse. The inset of Fig. 1(b)
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FIG. 1. Suppression of synchrony in population of 64 electro-
chemical oscillators by a single pulse. The pulse was administered
at t=tg=7.43 s, at which the phase of the mean current
ds=1hs/(27r) mod 1=0.35 (i is the phase at tg in radian). Pulse
parameters: intensity Ip=—0.6 V, duration Tp=0.1 s. (a) Time series
of the mean (bold line) and an individual (thin line) current.
(b) Time series of order r. Inset: Snapshot of oscillators in the
H(i(1)—(i)) vs i(t)—(i) space at t=34.5 s.

shows that phase points of the oscillators scattered almost
uniformly along the limit cycle in the two-dimensional phase
space during the desynchronization state. However, this de-
synchronized state is unstable and after about 30 s resyn-
chronization began.

The single pulse was administered at various phases of
the mean current cycle. The grayscale plot of the order
in Fig. 2(a) shows that the single pulse can effectively de-
synchronize the population only in a narrow range
¢s=0.33-0.38 (5% of the cycle) of the vulnerable phase
¢yp=0.35. The value of the vulnerable phase depends on
pulse parameters such as intensity and duration. With strong
or very weak pulses, only type O or type 1 phase resetting,
respectively, was obtained as shown in Fig. 2(b). [By defini-
tion, type O or 1 resetting is characterized by a mean gradient
of 0 or 1 in Fig. 2(b).] A vulnerable phase for desynchroni-
zation existed at an intermediate pulse strength such that
phase singularity [3] occurred [Fig. 2(b)]. We also found that
the desynchronization effects are less when the initial order
ry is large. For example, with ry=0.95, although the vulner-
able phase range was still around 0.35, the value of the low-
est order after the pulse was more than twice that in the case
of ry=0.89 and the resynchronization was about three times
faster. Because of the resynchronization, reapplication of the
pulse is required to maintain the desynchronized state. A
demand-controlled repeated application of the single pulse
was implemented in experiments. Figure 2(c) shows a de-
crease of the mean order from 0.94 to 0.29 in the repeated
single pulse operation. There is variability in the series of
desynchronization steps. This likely is due to the sensitive
dependence of the narrow vulnerable phase range on instan-
taneous order, pulse parameters, and on minor variations of
the system conditions.

One major drawback of the single pulse stimulation is that
real-time knowledge of the phase is required to assure that
the pulse is triggered in the narrow vulnerable phase range.
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FIG. 2. Effect of single pulse on order parameter. (a) Grayscale
plot of r obtained in 20 single pulse experiments in which the pulse
was administered at various phases of the mean current (gg).
Ip=—0.6 V, Tp=0.1 s. The bar on the abscissa indicates the stimu-
lation signal, before which the mean order r4=0.89. (b) Phase of the
mean current after the pulse stimulation (¢.,) Vs ¢g. Strong
(square), weak (circle), and very weak (triangle) pulses with
{Ip, Tp}={-1 V,0.5 s}, {-0.6 V,0.1 s}, {~1 V,0.01 s}, respectively.
(c) Time series of r in repeated single pulse experiment. The pulse
was applied at ¢¢=0.35 once the mean current reached an opti-
mized threshold value. The stimulation started at t=0s with
r9=0.94, after which the mean order r;=0.29. The average fre-
quency of the pulse administration fg=2.7/100 s.

Phase oscillators have been used to develop double pulse
methods in which the first (strong) pulse sets the phase of the
cluster to a value ¢pgr independent of its initial dynamical
state, the order parameter quickly relaxes back to the original
limit cycle, and the second (weak) pulse is applied at a vul-
nerable phase to desynchronize the cluster [18].

The effect of a strong, phase-reset pulse in the experimen-
tal system is shown in Fig. 3(a). Right after the strong pulse,
the phase of the order parameter reached a fixed value
¢pr=0.7 independent of the stimulation phase [see upper
panel in Fig. 3(a)], although some spread of the phase then
gradually developed. The order r also increased as a result of
the strong pulse [lower panel of Fig. 3(a)] and r slowly re-
laxed back to its original lower value after more than
28 cycles; this is much slower than that found in simulations
with phase oscillators. Correspondingly, a longer relaxation
time between the two pulses, on the order of the period of the
individual cycle, has to be used to assure that the second,
desynchronization pulse will work efficiently. Figure 3(b)
shows the effects of the double pulse stimulation with a sepa-
ration time 7T',. T;,=Const X T,;, where T is the period of
the cycle. (Because of the small drift that exists in the sys-
tem, T, may need to be updated in long experiments.)
Const=35.6 is obtained based on the number of cycles n that
we waited after the first pulse, the reset phase ¢pr, and
the vulnerable phase ¢yp, i.e., Const=n+(1—dpr)+ Pyp
=5+(1-0.7)+0.3=5.6. Compared with the single pulse re-
sults in Fig. 2(a), we see that the greatest improvement by
the double pulse stimulation is that it can desynchronize the
cluster irrespective of the stimulation phases, which implies
that no real-time phase calculation is required. However, the
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FIG. 3. Desynchronization by double pulse stimulation. (a)
Phase reset by a strong pulse (lp=—1 V,Tp=0.5s) in 20 experi-
ments with various stimulation phases. Upper panel: time series of
the phase of the order parameter ¢,; lower panel: time series of
order r. (b) Grayscale plot of r from double pulse experiments.
Pulse parameters: first pulse, /y=—1V, T;=0.5s; second pulse,
I,=-0.6 V, T,=0.1s; relaxation time between the two pulses,
T1,=5.6 X T, where T()=2.18 s is the mean period between the two
pulses. (c) Time series of r in repeated double pulse experiment.
r9=0.89, r;=0.57, fs=2.31/100 s.

higher order value before the second pulse resulted in a less
effective desynchronization than that in the single pulse
method. Repeated administration of double pulses can block
the cluster’s resynchronization, as shown in Fig. 3(c). Be-
cause of the short synchronized windows between the two
pulses and lower effectiveness of the second pulse, the mean
order decreased to 0.57, almost twice that obtained in the
repeated single pulse experiment (0.29).

If the increase in order effected by the phase reset pulse
could be eliminated or limited without affecting the reset
phase, the desynchronization pulse would be more effective.
However, this could not be achieved by a simple decrease in
the intensity or duration of the first pulse because a weaker
resetting pulse not only gave a smaller order but also did not
produce a phase reset. Two other modifications were thus
explored in the experiments in order to decrease the high
order obtained with the first resetting pulse. In the first one
(triple pulse method), we use two pulses instead of one to
desynchronize the population after the phase resetting is
achieved. The middle pulse is applied close to but not at the
vulnerable phase, and it decreased the order by about 10%
without changing the phase of the population to a large ex-
tent. This yields an efficient third pulse (which is applied at
the vulnerable phase) as seen in Fig. 4(a). Note that there is
a somewhat larger dependency of the efficiency of the de-
synchronization pulse on the stimulation phase compared to
that of the double pulse stimulation as can be seen by com-
paring Figs. 4(a) and 3(b); this is likely due to a small phase
change produced by the middle pulse. In repeated application
of the triple pulse stimulation [Fig. 4(c)] the mean order
decreased to 0.53, only 7% lower than that in the repeated
double pulse experiments. However, the average frequency
of the pulse administration decreased from f5=2.31/100 s in
the repeated double pulse case to fg=1.69/100 s in the re-
peated triple pulse because the third pulse gave not only a
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FIG. 4. Desynchronization of the cluster by modified double
pulse stimulation. (a) Grayscale plot of order r from triple pulse
experiments. Pulse parameters: first pulse, /y=—1 V, T;=0.5 s; sec-
ond pulse, I,=-0.6 V, T,=0.1 s; T|,=2.55X T, where T,=2.09 s;
third pulse, 13=-0.6 V, T3=0.1 s; T»3=3.1 X Ty,. (b) Grayscale plot
of r from noisy double pulse experiments. Pulse parameters: first
pulse, I1=-1 V with 30% of white noise, 7;=0.5 s; second pulse,
1,==0.6 V, T,=0.11s; T|,=5.6 X T, where Ty=2.10 s. (c) and (d)
Time series of r in repeated triple pulse and noisy double pulse
experiment, respectively. (¢) ry=0.89, r;=0.53, fs=1.69/100 s. (d)
r9=0.87, r;=0.54, fs=1.25/100 s.

lower minimum order value but also a slower resynchroni-
zation rate.

In the second modification the decrease of high order after
the phase resetting is achieved by modifying the phase reset-
ting pulse. We make use of the fact that noise has a desyn-
chronizing effect [20] and therefore superimpose noise onto
the first pulse (noisy double pulse). The grayscale plot of r
[Fig. 4(b)] shows the improvement obtained with noise
[compare to Fig. 3(b)]. The time series of r in the repeated
noisy double pulse experiment [Fig. 4(d)] shows that an even
lower pulse frequency fs=1.25/100 s was obtained due to
the slower resynchronization rate. The decrease of the pulse
administration frequency reduces the ratio of the synchro-
nized to the desynchronized periods; on the other hand, the
short synchronized periods between the two pulses are inher-
ent properties of the double pulse methods. To overcome this
issue, the stronger resetting pulse can be replaced by a low-
frequency pulse train which causes a soft phase reset by en-
trainment and hence avoids a strong reset being followed by
an epoch of synchronization [23].

In summary, we have shown the existence of a phase sin-
gularity in a synchronized population of oscillators; this sin-
gularity can be used to desynchronize the population without
quenching the individual oscillators. We have implemented
single and double pulse desynchronization stimulations to an
experimental oscillator population; modifications of the
methods based on the studies of phase oscillators are needed
because of the transient dynamical features of the laboratory
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system. Short pulses with duration of a few percent of the
cycle period and longer relaxation time up to several cycle
periods between the two pulses are required in the single and
double pulse method, respectively. The single pulse and its
repeated administration can effectively suppress the syn-
chrony of the cluster when the phase of the collective signal
is calculated onsite to ensure that each pulse is applied
within the narrow vulnerable phase range; in addition, the
pulse necessary for desynchronization is much weaker than
that causing a reset. The double pulse stimulation eliminates
the dependence of the desynchronization on the stimulation
phases and the need of the phase calculation. However, de-
synchronization with the double pulse is less efficient due to
the slow relaxation of the order after the first pulse. By add-
ing an extra weak pulse between the original two pulses or
by adding noise to the first pulse, a significant decrease of
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the pulse readministration frequency in the demand-
controlled repeated application can be attained.

Although the modified pulse stimulation methods were
found effective in desynchronization of an electrochemical
oscillator population, they could find applications in many
systems with similar features such as transient dynamics and
inherent noise. More specifically, they can be promising ap-
proaches in the improvement of the neurological stimulation
aiming at the suppression of pathological, synchronized ce-
rebral activity such as in Parkinson’s disease [13,14] or es-
sential tremor [15]. The advantage of using global pulse
stimulation is that it may require only a simple modification
of the currently used deep brain stimulation technique.
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